

JAWAHARLAL COLLEGE OF ENGINEERING AND TECHNOLOGY

JAWHAR GARDENS, LAKKIDI, MAGALAM (PO), PALAKKAD

CSL332 – NETWORKING LAB

LABORATORY MANUAL

B.TECH - CSE

SEMESTER-VI

(2019 Regulation-KTU)

Department of Computer Science & Engineering

JAWAHARLAL COLLEGE OF ENGINEERING &

TECHNOLOGY
Approved by AICTE - ISO 9001:2015 Certified, Affiliated to APJ Abdul Kalam

Technological University, Kerala

Jawahar Gardens, Lakkidi, Mangalam, Palakkad District,Ottapalam, Kerala –

679301

JAWAHARLAL COLLEGE OF ENGINEERING AND TECHNOLOGY

JAWHAR GARDENS, LAKKIDI, MAGALAM (PO), PALAKKAD

INSTITUTE VISION

Emerge as a centre of excellence for professional education to produce high quality

engineers and entrepreneurs for the development of the region and the Nation.

INSTITUTE MISSION

 To become an ultimate destination for acquiring latest and advanced knowledge in the

multidisciplinary domains.

 To provide high quality education in engineering and technology through innovative

teaching-learning practices, research and consultancy, embedded with professional

ethics.

 To promote intellectual curiosity and thirst for acquiring knowledge through outcome

based education.

 To have partnership with industry and reputed institutions to enhance the employability

skills of the students and pedagogical pursuits.

 To leverage technologies to solve the real life societal problems through community

services.

JAWAHARLAL COLLEGE OF ENGINEERING AND TECHNOLOGY

JAWHAR GARDENS, LAKKIDI, MAGALAM (PO), PALAKKAD

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

VISION

To produce competent professionals with research and innovative skills, by providing them

with most conducive environment for quality academic and research oriented undergraduate

and postgraduate education along with moral values committed to build a vibrant nation.

MISSION

 Provide a learning environment to develop creativity and problem solving skills in a

professional manner.

 Expose to latest technologies and tools used in the field of computer science.

 Provide a platform to explore the industries to understand the work culture and

expectation of an organization.

 Enhance Industry Institute Interaction program to develop the entrepreneurship skills.

 Develop research interest among students which will impart a better life for the

society and the nation.

JAWAHARLAL COLLEGE OF ENGINEERING AND TECHNOLOGY

JAWHAR GARDENS, LAKKIDI, MAGALAM (PO), PALAKKAD

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

PROGRAM EDUCATIONAL OBJECTIVES (PEOs)

The Graduates in Computer Science and Engineering will be able to:

PEO1: Provide high quality knowledge in computer science and engineering required for a

 computer professional to identify and solve problems in various application domains.

PEO2: Persist with the ability in innovative ideas in computer support systems and transmit

 the knowledge and skills for research and advanced learning.

PEO3: Manifest the motivational capabilities and turn on social and economic commitment

 to community services.

PROGRAM SPECIFIC OUTCOMES (PSOs)

PSO1: Use fundamental knowledge of mathematics to solve problems using suitable

analysis methods, data structure and algorithms.

PSO2: Interpret the basic concepts and methods of computer systems and technical

 specifications to provide accurate solutions.

PSO3: Apply theoretical and practical proficiency with a wide area of programming

 knowledge, design new ideas and innovations towards research.

JAWAHARLAL COLLEGE OF ENGINEERING AND TECHNOLOGY

JAWHAR GARDENS, LAKKIDI, MAGALAM (PO), PALAKKAD

The following are the Program Outcomes of Engineering Students:

PO1

Engineering knowledge: Apply the knowledge of mathematics, science, engineering

fundamentals, and an engineering specialization to the solution of complex engineering

problems.

PO2

Problem analysis: Identify, formulate, review research literature, and analyze complex

engineering problems reaching substantiated conclusions using first principles of

mathematics, natural sciences, and engineering sciences.

PO3

Design/development of solutions: Design solutions for complex engineering problems and

design system components or processes that meet the specified needs with appropriate

consideration for the public health and safety, and the cultural, societal, and environmental

considerations.

PO4

Conduct investigations of complex problems: Use research-based knowledge and research

methods including design of experiments, analysis and interpretation of data, and synthesis of

the information to provide valid conclusions.

PO5

Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern

engineering and IT tools including prediction and modeling to complex engineering activities

with an understanding of the limitations.

PO6

The engineer and society: Apply reasoning informed by the contextual knowledge to assess

societal, health, safety, legal and cultural issues and the consequent responsibilities relevant

to the professional engineering practice.

PO7

Environment and sustainability: Understand the impact of the professional engineering

solutions in societal and environmental contexts, and demonstrate the knowledge of, and need

for sustainable development.

PO8
Ethics: Apply ethical principles and commit to professional ethics and responsibilities and

norms of the engineering practice.

PO9
Individual and team work: Function effectively as an individual, and as a member or leader

in diverse teams, and in multidisciplinary settings.

PO10

Communication: Communicate effectively on complex engineering activities with the

engineering community and with society at large, such as, being able to comprehend and write

effective reports and design documentation, make effective presentations, and give and

receive clear instructions.

PO11

Project management and finance: Demonstrate knowledge and understanding of the

engineering and management principles and apply these to one’s own work, as a member and

leader in a team, to manage projects and in multidisciplinary environments.

PO12
Life-long learning: Recognize the need for, and have the preparation and ability to engage in

independent and life-long learning in the broadest context of technological change.

CSL332 – NETWORK LAB MANUAL

Department of Computer Science and Engineering, 1

PROGRAM 1: FAMILIARITY WITH BASICS OF NETWORK CONFIGURATION

FILES AND NETWORKING

commands in Linux - ifconfig, netstat, ping, arp, telnet, ftp, finger.

Program Objective:
Understanding and using of commands like ifconfig, netstat, ping, arp, telnet, ftp, finger,

traceroute, whois

Program Description:
UNIX utilities are commands that, generally, perform a single task. It may be as simple as printing

the date and time, or a complex as finding files that match many criteria throughout a directory

hierarchy

IFCONFIG
The Unix command ifconfig (short for interface configurator) serves to configure and control

TCP/IP network interfaces from a command line interface (CLI).

Common uses for ifconfig include setting an interface's IP address and netmask, and disabling or

enabling a given interface. On some Unix-like operating systems, ifconfig is used to configure, or

view the configuration of, a network interface.

Type ipconfig/all to see detailed configuration information for all network adapters configured on

the computer.

The ipconfig (short for IP Configuration) is a basic, yet popular, Windows network command-line

utility used to display the TCP/IP network configuration of a computer. If you are familiar with

Linux, this tool is similiar to ifconfig. This tool is often used for troubleshooting network

connectivity issues. With ipconfig, you can identify the types of network adapaters on your

computer, the computer's IP address, the IP addresses of the DNS (Domain Name System) servers

being used, and much more.

ifconfig -a

Displays the configuration of all interfaces, both active and inactive.

NETSTAT
netstat (network statistics) is a command-line tool that displays network connections (both

incoming and outgoing), routing tables, and a number of network interface statistics.

It is used for finding problems in the network and to determine the amount of traffic on the network

as a performance measurement.

Parameters
Parameters used with this command must be prefixed with a hyphen (-) rather than a slash (/).

-a : Displays all active TCP connections and the TCP and UDP ports on which the computer is

listening.

-e : Displays ethernet statistics, such as the number of bytes and packets sent and received. This

parameter can be combined with -s.

-f : Displays fully qualified domain names <FQDN> for foreign addresses.

-i : Displays network interfaces and their statistics (not available under Windows)

-n : Displays active TCP connections, however, addresses and port numbers are expressed

numerically and no attempt is made to determine names.

-o : Displays active TCP connections and includes the process ID (PID) for each connection.

-p Linux: Process : Show which processes are using which sockets

CSL332 – NETWORK LAB MANUAL

Department of Computer Science and Engineering, 2

PING
Ping is a computer network tool used to test whether a particular host is reachable across an IP

network; it is also used to self-test the network interface card of the computer, or as a speed test.

It works by sending ICMP “echo request” packets to the target host and listening for ICMP “echo

response” replies. Ping does not estimate the round-trip time, as it does not factor in the user's

connection speed, but instead is used to record any packet loss, and print a statistical summary

when finished.

The word ping is also frequently used as a verb or noun, where it is usually incorrectly used to

refer to the round-trip time, or measuring the round-trip time. The ping command can be used to

test end-to-end connectivity between two host devices. It measures the round-trip time for a

message to get from source to destination. The ping command can be used to verify the

connectivity between two network devices that are IP (Internet Protocol) based.

ARP
In computer networking, the Address Resolution Protocol (ARP) is the method for finding a

host's link layer (hardware) address when only its Internet Layer (IP) or some other Network Layer

address is known.

ARP has been implemented in many types of networks; it is not an IP-only or Ethernet-only

protocol. It can be used to resolve many different network layer protocol addresses to interface

hardware addresses, although, due to the overwhelming prevalence of IPv4 and Ethernet, ARP is

primarily used to translate IP addresses to Ethernet MAC addresses.

How to Use ARP to Find a MAC Address?

In Windows, Linux, and other operating systems, the command line utility ARP (Address

Resolution Protocol) shows local MAC address information stored in the ARP cache. However, it

only works within the small group of computers on a local area network (LAN), not across the

internet.

ARP is intended to be used by system administrators, and it is not typically a useful way to track

down computers and people on the internet.

TCP/IP computer networks use both the IP addresses and MAC addresses of connected client

devices. While the IP address changes over time, the MAC address of a network adapter always

stays the same.

Start by pinging the device you want the MAC to address for:

ping 192.168.86.45

The ping command establishes a connection with the other device on the network and should show

a result like this:

Pinging 192.168.86.45 with 32 bytes of data:

Reply from 192.168.86.45: bytes=32 time=290ms TTL=128

Reply from 192.168.86.45: bytes=32 time=3ms TTL=128

Reply from 192.168.86.45: bytes=32 time=176ms TTL=128Reply from 192.168.86.45: bytes=32

time=3ms TTL=128

Use the following ARP command to get a list that shows the MAC address of the device you

pinged:

CSL332 – NETWORK LAB MANUAL

Department of Computer Science and Engineering, 3

arp -a

The results may look something like this but probably with many other entries:

Interface: 192.168.86.38 --- 0x3

 Internet Address Physical Address Type

 192.168.86.1 70-3a-cb-14-11-7a dynamic

 192.168.86.45 98-90-96-B9-9D-61 dynamic

 192.168.86.255 ff-ff-ff-ff-ff-ff static

 224.0.0.22 01-00-5e-00-00-16 static

224.0.0.251 01-00-5e-00-00-fb static

Find the device's IP address in the list. The MAC address is shown right next to it. In this example,

the IP address is 192.168.86.45, and its MAC address is 98-90-96-B9-9D-61.

TELNET
Telnet (Telecommunication network) is a network protocol used on the Internet or local area

network (LAN) connections. In Linux, the telnet command is used to create a remote connection

with a system over a TCP/IP network.

Typically, telnet provides access to a command-line interface on a remote machine.

The term telnet also refers to software which implements the client part of the protocol. Telnet

clients are available for virtually all platforms.

Protocol details:
Telnet is a client-server protocol, based on a reliable connection-oriented transport. Typically this

protocol is used to establish a connection to TCP port 23

FTP
File Transfer Protocol (FTP):

FTP is a network protocol used to transfer data from one computer to another through a network

such as the Internet.FTP is a file transfer protocol for exchanging and manipulating files over a

TCP computer network. An FTP client may connect to an FTP server to manipulate files on that

server.FTP runs over TCP. It defaults to listen on port 21 for incoming connections from FTP

clients. A connection to this port from the FTP Client forms the control stream on which commands

are passed from the FTP client to the FTP server and on occasion from the FTP server to the FTP

client. FTP uses out-of-band control, which means it uses a separate connection for control and

data. Thus, for the actual file transfer to take place, a different connection is required which is

called the data stream.

To establish an FTP connection to a remote system, use the ftp command with the remote system's

IP address:

ftp [IP]

For instance, connecting to a remote server with the IP address 192.168.100.9:

ftp 192.168.100.9

FINGER:
In computer networking, the Name/Finger protocol and the Finger user information protocol

are simple network protocols for the exchange of human-oriented status and user information.

Finger command is a user information lookup command which gives details of all the users logged

CSL332 – NETWORK LAB MANUAL

Department of Computer Science and Engineering, 4

in. This tool is generally used by system administrators. It provides details like login name, user

name, idle time, login time, and in some cases their email address even.

finger -p ch

Display information about the user ch. Output appears similar to the following:

Login name: admin

In real life: Computer Hope

On since Feb 11 23:37:16 on pts/7 from domain.computerhope.com

28 seconds Idle Time

Unread mail since Mon Feb 12 00:22:52 2001

TRACEROUTE:

traceroute is a computer network tool used to determine the route taken by packets across an IP

network . An IPv6 variant, traceroute6, is also widely available. Traceroute is often used for

network troubleshooting. By showing a list of routers traversed, it allows the user to identify the

path taken to reach a particular destination on the network. This can help identify routing problems

or firewalls that may be blocking access to a site. Traceroute is also used by penetration testers to

gather information about network infrastructure and IP ranges around a given host. It can also be

used when downloading data, and if there are multiple mirrors available for the same piece of data,

one can trace each mirror to get a good idea of which mirror would be the fastest to use.

In other words, traceroute command in Linux prints the route that a packet takes to reach the host.

This command is useful when you want to know about the route and about all the hops that a

packet takes.

The traceroute command in Windows is tracert. On a Linux system, the command

is tracerouting. A typical tracert on a Windows machine would look like the following.

tracert www.google.com

Tracing route to www.google.com [74.125.227.179]

over a maximum of 30 hops:

1 1 ms <1 ms 1 ms 192.168.1.1

2 7 ms 6 ms 6 ms 10.10.1.2

3 7 ms 8 ms 7 ms 10.10.1.45

4 9 ms 8 ms 8 ms 10.10.25.45

5 9 ms 10 ms 9 ms 10.10.85.99

6 11 ms 51 ms 10 ms 10.10.64.2

7 11 ms 10 ms 10 ms 10.10.5.88

8 11 ms 10 ms 11 ms 216.239.46.248

9 12 ms 12 ms 12 ms 72.14.236.98

10 18 ms 18 ms 18 ms 66.249.95.231

11 25 ms 24 ms 24 ms 216.239.48.4

12 48 ms 46 ms 46 ms 72.14.237.213

13 50 ms 50 ms 50 ms 72.14.237.214

14 48 ms 48 ms 48 ms 64.233.174.137

CSL332 – NETWORK LAB MANUAL

Department of Computer Science and Engineering, 5

15 47 ms 47 ms 46 ms dfw06s32-in-f19.1e100.net [74.125.227.179]

Trace complete.

For all additional options of traceroute, check the manual page in the terminal with the man

command:man traceroute

WHO IS:
WHOIS (pronounced "who is"; not an acronym) is a query/response protocol which is widely

used for querying an official database in order to determine the owner of a domain name, an IP

address, or an autonomous system number on the Internet. WHOIS lookups were traditionally

made using a command line interface, but a number of simplified web-based tools now exist for

looking up domain ownership details from different databases. WHOIS normally runs on TCP port

43.

The WHOIS system originated as a method that system administrators could use to look up

information to contact other IP address or domain name administrators (almost like "white pages").

whois 216.58.206.46

The following results may also be obtained via:

https://whois.arin.net/rest/nets;q=216.58.206.46?showDetails=true&showARIN=false&showNo

nArinTopLevelNet=false&ext=netref2

NetRange: 216.58.192.0 - 216.58.223.255

CIDR: 216.58.192.0/19

NetName: GOOGLE

NetHandle: NET-216-58-192-0-1

Parent: NET216 (NET-216-0-0-0-0)

NetType: Direct Allocation

OriginAS: AS15169

Organization: Google LLC (GOGL)

RegDate: 2012-01-27

Updated: 2012-01-27

Ref: https://whois.arin.net/rest/net/NET-216-58-192-0-1

OrgName: Google LLC

OrgId: GOGL

CSL332 – NETWORK LAB MANUAL

Department of Computer Science and Engineering, 6

Address: 1600 Amphitheatre Parkway

City: Mountain View

StateProv: CA

PostalCode: 94043

Country: US

RegDate: 2000-03-30

Updated: 2017-12-21

Ref: https://whois.arin.net/rest/org/GOGL ...

whois google.com

Domain Name: GOOGLE.COM

 Registry Domain ID: 2138514_DOMAIN_COM-VRSN

 Registrar WHOIS Server: whois.markmonitor.com

 Registrar URL: http://www.markmonitor.com

 Updated Date: 2011-07-20T16:55:31Z

 Creation Date: 1997-09-15T04:00:00Z

 Registry Expiry Date: 2020-09-14T04:00:00Z

 Registrar: MarkMonitor Inc.

 Registrar IANA ID: 292

 Registrar Abuse Contact Email: abusecomplaints@markmonitor.com

 Registrar Abuse Contact Phone: +1.2083895740

 Domain Status: clientDeleteProhibited https://icann.org/epp#clientDeleteProhibited

 Domain Status: clientTransferProhibited https://icann.org/epp#clientTransferProhibited

 Domain Status: clientUpdateProhibited https://icann.org/epp#clientUpdateProhibited

 Domain Status: serverDeleteProhibited https://icann.org/epp#serverDeleteProhibited

 Domain Status: serverTransferProhibited https://icann.org/epp#serverTransferProhibited

https://whois.arin.net/rest/org/GOGL

CSL332 – NETWORK LAB MANUAL

Department of Computer Science and Engineering, 7

 Domain Status: serverUpdateProhibited https://icann.org/epp#serverUpdateProhibited

 Name Server: NS1.GOOGLE.COM

 Name Server: NS2.GOOGLE.COM

 Name Server: NS3.GOOGLE.COM

 Name Server: NS4.GOOGLE.COM

CSL332 – NETWORK LAB MANUAL

Department of Computer Science and Engineering, 8

PROGRAM 2 - SOCKET PROGRAMMING IN C/C++

What is socket programming?
Socket programming is a way of connecting two nodes on a network to communicate with each

other. One socket(node) listens on a particular port at an IP, while other socket reaches out to the

other to form a connection. Server forms the listener socket while client reaches out to the server.

CSL332 – NETWORK LAB MANUAL

Department of Computer Science and Engineering, 9

Stages for server

1. Socket creation:

int sockfd = socket(domain, type, protocol)

 sockfd: socket descriptor, an integer (like a file-handle)

 domain: integer, specifies communication domain. We use AF_ LOCAL as defined in

the POSIX standard for communication between processes on the same host. For

communicating between processes on different hosts connected by IPV4, we use

AF_INET and AF_I NET 6 for processes connected by IPV6.

 type: communication type

SOCK_STREAM: TCP(reliable, connection oriented)

SOCK_DGRAM: UDP(unreliable, connectionless)

 protocol: Protocol value for Internet Protocol(IP), which is 0. This is the same number

which appears on protocol field in the IP header of a packet.(man protocols for more

details)

2. Setsockopt: This helps in manipulating options for the socket referred by the file descriptor

sockfd. This is completely optional, but it helps in reuse of address and port. Prevents error such

as: “address already in use”.

int setsockopt(int sockfd, int level, int optname, const void *optval, socklen_t optlen);

3. Bind:

int bind(int sockfd, const struct sockaddr *addr, socklen_t addrlen);

After creation of the socket, bind function binds the socket to the address and port number

specified in addr(custom data structure). In the example code, we bind the server to the localhost,

hence we use INADDR_ANY to specify the IP address.

4. Listen:

int listen(int sockfd, int backlog);

It puts the server socket in a passive mode, where it waits for the client to approach the server to

make a connection. The backlog, defines the maximum length to which the queue of pending

connections for sockfd may grow. If a connection request arrives when the queue is full, the

client may receive an error with an indication of ECONNREFUSED.

5. Accept:

int new_socket= accept(int sockfd, struct sockaddr *addr, socklen_t *addrlen); It extracts the

first connection request on the queue of pending connections for the listening socket, sockfd,

CSL332 – NETWORK LAB MANUAL

Department of Computer Science and Engineering, 10

creates a new connected socket, and returns a new file descriptor referring to that socket. At this

point, connection is established between client and server, and they are ready to transfer data.

Stages for Client

 Socket connection: Exactly same as that of server’s socket creation

 Connect: The connect() system call connects the socket referred to by the file descriptor

sockfd to the address specified by addr. Server’s address and port is specified in addr.

int connect(int sockfd, const struct sockaddr *addr, socklen_t addrlen);

Implementation
Here we are exchanging one hello message between server and client to demonstrate the

client/server model.

 Server.c

// Server side C/C++ program to demonstrate Socket

// programming

#include <netinet/in.h>

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#include <sys/socket.h>

#include <unistd.h>

#define PORT 8080

int main(int argc, char const* argv[])

{

 int server_fd, new_socket, valread;

 struct sockaddr_in address;

 int opt = 1;

 int addrlen = sizeof(address);

CSL332 – NETWORK LAB MANUAL

Department of Computer Science and Engineering, 11

 char buffer[1024] = { 0 };

 char* hello = "Hello from server";

 // Creating socket file descriptor

 if ((server_fd = socket(AF_INET, SOCK_STREAM, 0))

 == 0) {

 perror("socket failed");

 exit(EXIT_FAILURE);

 }

 // Forcefully attaching socket to the port 8080

 if (setsockopt(server_fd, SOL_SOCKET,

 SO_REUSEADDR | SO_REUSEPORT, &opt,

 sizeof(opt))) {

 perror("setsockopt");

 exit(EXIT_FAILURE);

 }

 address.sin_family = AF_INET;

 address.sin_addr.s_addr = INADDR_ANY;

 address.sin_port = htons(PORT);

 // Forcefully attaching socket to the port 8080

 if (bind(server_fd, (struct sockaddr*)&address,

 sizeof(address))

 < 0) {

 perror("bind failed");

CSL332 – NETWORK LAB MANUAL

Department of Computer Science and Engineering, 12

 exit(EXIT_FAILURE);

 }

 if (listen(server_fd, 3) < 0) {

 perror("listen");

 exit(EXIT_FAILURE);

 }

 if ((new_socket

 = accept(server_fd, (struct sockaddr*)&address,

 (socklen_t*)&addrlen))

 < 0) {

 perror("accept");

 exit(EXIT_FAILURE);

 }

 valread = read(new_socket, buffer, 1024);

 printf("%s\n", buffer);

 send(new_socket, hello, strlen(hello), 0);

 printf("Hello message sent\n");

 return 0;

}

 client.c

// Client side C/C++ program to demonstrate Socket

// programming

#include <arpa/inet.h>

#include <stdio.h>

CSL332 – NETWORK LAB MANUAL

Department of Computer Science and Engineering, 13

#include <string.h>

#include <sys/socket.h>

#include <unistd.h>

#define PORT 8080

 int main(int argc, char const* argv[])

{ int sock = 0, valread;

 struct sockaddr_in serv_addr;

 char* hello = "Hello from client";

 char buffer[1024] = { 0 };

 if ((sock = socket(AF_INET, SOCK_STREAM, 0)) < 0) {

 printf("\n Socket creation error \n");

 return -1;

 }

 serv_addr.sin_family = AF_INET;

 serv_addr.sin_port = htons(PORT);

 // Convert IPv4 and IPv6 addresses from text to binary

 // form

 if (inet_pton(AF_INET, "127.0.0.1", &serv_addr.sin_addr)

 <= 0) {

 printf(

 "\nInvalid address/ Address not supported \n");

 return -1;

 }

 if (connect(sock, (struct sockaddr*)&serv_addr,

 sizeof(serv_addr))

CSL332 – NETWORK LAB MANUAL

Department of Computer Science and Engineering, 14

 < 0) {

 printf("\nConnection Failed \n");

 return -1;

 }

 send(sock, hello, strlen(hello), 0);

 printf("Hello message sent\n");

 valread = read(sock, buffer, 1024);

 printf("%s\n", buffer); return 0;}

Compiling:

gcc client.c -o client

gcc server.c -o server

Output:

Client:Hello message sent

Hello from server

Server:Hello from client

Hello message sent

CSL332 – NETWORK LAB MANUAL

Department of Computer Science and Engineering, 15

PROGRAM 3 - TCP CHAT SERVER/CLIENT

Aim

To implement a chat server and client in java using TCP sockets.

Algorithm

Server

1. Create a server socket

2. Wait for client to be connected.

3. Read Client's message and display it

4. Get a message from user and send it to client

5. Repeat steps 3-4 until the client sends "end"

6. Close all streams

7. Close the server and client socket

8. Stop

Client

1. Create a client socket and establish connection with the server

2. Get a message from user and send it to server

3. Read server's response and display it

4. Repeat steps 2-3 until chat is terminated with "end" message

5. Close all input/output streams

6. Close the client socket

7. Stop

Program

// TCP Chat Server--tcpchatserver.java

import java.io.*;

import java.net.*;

class tcpchatserver

{

public static void main(String args[])throws Exception

{

PrintWriter toClient;

BufferedReader fromUser, fromClient;

try

{

ServerSocket Srv = new ServerSocket(5555);

System.out.print("\nServer started\n");

Socket Clt = Srv.accept();

System.out.println("Client connected");

toClient = new PrintWriter(new BufferedWriter(new

OutputStreamWriter(Clt.getOutputStream())), true);

fromClient = new BufferedReader(new

InputStreamReader(Clt.getInputStream()));

fromUser = new BufferedReader(new

InputStreamReader(System.in));

String CltMsg, SrvMsg;

while(true)

{

CSL332 – NETWORK LAB MANUAL

Department of Computer Science and Engineering, 16

CltMsg= fromClient.readLine();

if(CltMsg.equals("end"))

break;

else

{

System.out.println("\nServer <<< " +

CltMsg);

System.out.print("Message to Client : ");

SrvMsg = fromUser.readLine();

toClient.println(SrvMsg);

}}

System.out.println("\nClient Disconnected");

fromClient.close();

toClient.close();

fromUser.close();

Clt.close();

Srv.close();

} catch (

Exception E)

{

System.out.println(E.getMessage());

}}}

// TCP Chat Client--tcpchatclient.java

import java.io.*;

import java.net.*;

class tcpchatclient

{

public static void main(String args[])throws Exception

{

Socket Clt;

PrintWriter toServer;

BufferedReader fromUser, fromServer;

try

{ if (

args.length >

1)

{

System.out.println("Usage: java hostipaddr");

System.exit(-1);

}

if (args.length == 0)

Clt = new Socket(InetAddress.getLocalHost(),5555);

else

Clt = new Socket(InetAddress.getByName(args[0]),

5555);

toServer = new PrintWriter(new BufferedWriter(new

CSL332 – NETWORK LAB MANUAL

Department of Computer Science and Engineering, 17

OutputStreamWriter(Clt.getOutputStream())), true);

fromServer = new BufferedReader(new

InputStreamReader(Clt.getInputStream()));

fromUser = new BufferedReader(new

InputStreamReader(System.in));

String CltMsg, SrvMsg;

System.out.println("Type \"end\" to Quit");

while (true)

{

System.out.print("\nMessage to Server : ");

CltMsg = fromUser.readLine();

toServer.println(CltMsg);

if (CltMsg.equals("end"))

break;

SrvMsg = fromServer.readLine();

System.out.println("Client <<< " + SrvMsg);

}} catch(Exception E)

{

System.out.println(E.getMessage());

}}}

Output

Server Console

$ javac tcpchatserver.java

$ java tcpchatserver

Server started

Client connected

Server <<< hi

Message to Client : hello

Server <<< how r u?

Message to Client : fine

Server <<< me too

Message to Client : bye

Client Disconnected

Client Console

$ javac tcpchatclient.java

$ java tcpchatclient

Type "end" to Quit

Message to Server : hi

Client <<< hello

Message to Server : how r u?

Client <<< fine

Message to Server : me too

Client <<< bye

Message to Server : end

Result

Thus both the client and server exchange data using TCP socket programming

CSL332 – NETWORK LAB MANUAL

Department of Computer Science and Engineering, 18

PROGRAM 4 - UDP CHAT SERVER/CLIENT

Aim

To implement a chat server and client in java using UDP sockets.

Algorithm

Server

1. Create two ports, server port and client port

2. Create a datagram socket and bind it to client port

3. Create a datagram packet to receive client message

4. Wait for client's data and accept it.

5. Read Client's message

6. Get data from user

7. Construct a datagram packet and send message through server port

8. Repeat steps 3-7 until the client has something to send

9. Close the server socket

10. Stop

Client

1. Create two ports, server port and client port

2. Create a datagram socket and bind it to server port

3. Get data from user

4. Create a datagram packet and send data with server ip address and client port

5. Create a datagram packet to receive server message

6. Read server's response and display it

7. Repeat steps 3-6 until there is some text to send

8. Close the client socket

9. Stop

Program

// UDP Chat Server--udpchatserver.java

import java.io.*;

import java.net.*;

class udpchatserver

{

public static int clientport = 8040,serverport = 8050;

public static void main(String args[]) throws Exception

{

DatagramSocket SrvSoc = new DatagramSocket(clientport);

byte[] SData = new byte[1024];

BufferedReader br = new BufferedReader(new

InputStreamReader(System.in));

System.out.println("Server Ready");

while (true)

{

byte[] RData = new byte[1024];

DatagramPacket RPack = new DatagramPacket(RData,

RData.length);

SrvSoc.receive(RPack);

CSL332 – NETWORK LAB MANUAL

Department of Computer Science and Engineering, 19

String Text = new String(RPack.getData());

if (Text.trim().length() == 0)

break;

System.out.println("\nFrom Client <<< " + Text);

System.out.print("Msg to Cleint : ");

String srvmsg = br.readLine();

InetAddress IPAddr = RPack.getAddress();

SData = srvmsg.getBytes();

DatagramPacket SPack = new DatagramPacket(SData,

SData.length, IPAddr, serverport);

SrvSoc.send(SPack);

}

System.out.println("\nClient Quits\n");

SrvSoc.close();

}}

// UDP Chat Client--udpchatclient.java

import java.io.*;

import java.net.*;

class udpchatclient

{

public static int clientport = 8040,serverport = 8050;

public static void main(String args[]) throws Exception

{

BufferedReader br = new BufferedReader(new

InputStreamReader (System.in));

DatagramSocket CliSoc = new DatagramSocket(serverport);

InetAddress IPAddr;

String Text;

if (args.length == 0)

IPAddr = InetAddress.getLocalHost();

else

IPAddr = InetAddress.getByName(args[0]);

byte[] SData = new byte[1024];

System.out.println("Press Enter without text to quit");

while (true)

{

System.out.print("\nEnter text for server : ");

Text = br.readLine();

SData = Text.getBytes();

DatagramPacket SPack = new DatagramPacket(SData,

SData.length, IPAddr, clientport);

CliSoc.send(SPack);

if (Text.trim().length() == 0)

break;

byte[] RData = new byte[1024];

DatagramPacket RPack = new DatagramPacket(RData,

CSL332 – NETWORK LAB MANUAL

Department of Computer Science and Engineering, 20

RData.length);

CliSoc.receive(RPack);

String Echo = new String(RPack.getData()) ;

Echo = Echo.trim();

System.out.println("From Server <<< " + Echo);

}

CliSoc.close();

}}

Output

Server Console

$ javac udpchatserver.java

$ java udpchatserver

Server Ready

From Client <<< are u the SERVER

Msg to Cleint : yes

From Client <<< what do u have to serve

Msg to Cleint : no eatables

Client Quits

Client Console

$ javac udpchatclient.java

$ java udpchatclient

Press Enter without text to quit

Enter text for server : are u the SERVER

From Server <<< yes

Enter text for server : what do u have to serve

From Server <<< no eatables

Enter text for server :

Result

Thus both the client and server exchange data using UDP sockets.

CSL332 – NETWORK LAB MANUAL

Department of Computer Science and Engineering, 21

PROGRAM 5 - IMPLEMENTATION OF SLIDING WINDOW PROTOCOL

AIM:

To write a java program to perform sliding window protocol

ALGORITHM:

1.Start the program.

2.Get the frame size from the user

3.To create the frame based on the user request.

4.To send frames to server from the client side.

5.If your frames reach the server it will send ACK signal to client otherwise it will send

NACK signal to client.

6.Stop the program

Program :

import java.net.*;

import java.io.*;

importjava.rmi.*;

public class slidsender

{

public static void main(String a[])throws Exception

{

ServerSocket ser=new ServerSocket(10);

Socket s=ser.accept();

DataInputStream in=new DataInputStream(System.in);

DataInputStream in1=newDataInputStream(s.getInputStream());

String sbuff[]=new String[8];

PrintStream p;

int sptr=0,sws=8,nf,ano,i; String ch;

do

{

p=new PrintStream(s.getOutputStream());

System.out.print("Enter theno. of frames : ");

nf=Integer.parseInt(in.readLine());

p.println(nf);

if(nf<=sws-1)

{

System.out.println("Enter "+nf+" Messages to be send\n"); for(i=1;i<=nf;i++)

{ sbuff[sptr]=in.readLine();

p.println(sbuff[sptr]);

sptr=++sptr%8;

} sws-=nf;

System.out.print("Acknowledgment received");

ano=Integer.parseInt(in1.readLine());

System.out.println(" for "+ano+" frames");

sws+=nf;

} else

{

CSL332 – NETWORK LAB MANUAL

Department of Computer Science and Engineering, 22

System.out.println("The no. of frames exceeds window size");

break;

}

System.out.print("\nDo you wants to send some more frames : ");

ch=in.readLine();

p.println(ch);

}

while(ch.equals("yes"));

s.close();

}

}

RECEIVER PROGRAM

import java.net.*;

import java.io.*;

class slidreceiver

{

public static void main(String a[])throws Exception

{

Socket s=new Socket(InetAddress.getLocalHost(),10);

DataInputStream in=newDataInputStream(s.getInputStream());

PrintStream p=new PrintStream(s.getOutputStream());

int i=0,rptr=-1,nf,rws=8;

String rbuf[]=new String[8]; String ch;

System.out.println();

do

{

nf=Integer.parseInt(in.readLine());

if(nf<=rws-1)

{

for(i=1;i<=nf;i++)

{

rptr=++rptr%8;

rbuf[rptr]=in.readLine();

System.out.println("The received Frame " +rptr+" is : "+rbuf[rptr]);

} rws-=nf;

System.out.println("\nAcknowledgmentsent\n");

p.println(rptr+1);

rws+=nf;

}

else

break;

ch=in.readLine();

}

while(ch.equals("yes"));

}

}

CSL332 – NETWORK LAB MANUAL

Department of Computer Science and Engineering, 23

OUTPUT:

//SENDER OUTPUT

Enter the no. of frames : 4

Enter 4 Messages to be send

hiii

how r u

i am fine

how is evryone

Acknowledgment received for 4 frames

Do you wants to send some more frames : no

//RECEIVER OUTPUT

The received Frame 0 is : hiii

The received Frame 1 is : how r u

The received Frame 2 is : i am fine

The received Frame 3 is : how is everyone

Result: Sliding window is implemented.

CSL332 – NETWORK LAB MANUAL

Department of Computer Science and Engineering, 24

PROGRAM 6 - DISTANCE-VECTOR ROUTING (DVR) ALGORITHM

import java.io.*;

public class DVR

{

 static int graph[][];

 static int via[][];

 static int rt[][];

 static int v;

 static int e;

 public static void main(String args[]) throws IOException

 {

 BufferedReader br = new BufferedReader(new InputStreamReader(System.in));

 System.out.println("Please enter the number of Vertices: ");

 v = Integer.parseInt(br.readLine());

 System.out.println("Please enter the number of Edges: ");

 e = Integer.parseInt(br.readLine());

 graph = new int[v][v];

 via = new int[v][v];

 rt = new int[v][v];

 for(int i = 0; i < v; i++)

 for(int j = 0; j < v; j++)

 {

 if(i == j)

 graph[i][j] = 0;

 else

 graph[i][j] = 9999;

 }

 for(int i = 0; i < e; i++)

 {

 System.out.println("Please enter data for Edge " + (i + 1) + ":");

 System.out.print("Source: ");

 int s = Integer.parseInt(br.readLine());

 s--;

 System.out.print("Destination: ");

 int d = Integer.parseInt(br.readLine());

 d--;

 System.out.print("Cost: ");

 int c = Integer.parseInt(br.readLine());

 graph[s][d] = c;

 graph[d][s] = c;

 }

CSL332 – NETWORK LAB MANUAL

Department of Computer Science and Engineering, 25

 dvr_calc_disp("The initial Routing Tables are: ");

 System.out.print("Please enter the Source Node for the edge whose cost has changed: ");

 int s = Integer.parseInt(br.readLine());

 s--;

 System.out.print("Please enter the Destination Node for the edge whose cost has changed: ");

 int d = Integer.parseInt(br.readLine());

 d--;

 System.out.print("Please enter the new cost: ");

 int c = Integer.parseInt(br.readLine());

 graph[s][d] = c;

 graph[d][s] = c;

 dvr_calc_disp("The new Routing Tables are: ");

 }

 static void dvr_calc_disp(String message)

 {

 System.out.println();

 init_tables();

 update_tables();

 System.out.println(message);

 print_tables();

 System.out.println();

 }

 static void update_table(int source)

 {

 for(int i = 0; i < v; i++)

 {

 if(graph[source][i] != 9999)

 {

 int dist = graph[source][i];

 for(int j = 0; j < v; j++)

 {

 int inter_dist = rt[i][j];

 if(via[i][j] == source)

 inter_dist = 9999;

 if(dist + inter_dist < rt[source][j])

 {

 rt[source][j] = dist + inter_dist;

 via[source][j] = i;

 }

 }

 }

CSL332 – NETWORK LAB MANUAL

Department of Computer Science and Engineering, 26

 }

 }

 static void update_tables()

 {

 int k = 0;

 for(int i = 0; i < 4*v; i++)

 {

 update_table(k);

 k++;

 if(k == v)

 k = 0;

 }

 }

 static void init_tables()

 {

 for(int i = 0; i < v; i++)

 {

 for(int j = 0; j < v; j++)

 {

 if(i == j)

 {

 rt[i][j] = 0;

 via[i][j] = i;

 }

 else

 {

 rt[i][j] = 9999;

 via[i][j] = 100;

 }

 }

 }

 }

 static void print_tables()

 {

 for(int i = 0; i < v; i++)

 {

 for(int j = 0; j < v; j++)

 {

 System.out.print("Dist: " + rt[i][j] + " ");

 }

 System.out.println();

 }

 }}

CSL332 – NETWORK LAB MANUAL

Department of Computer Science and Engineering, 27

PROGRAM 7 – SMTP

Aim: Program for Simulating SMTP Client.

Algorithm:

Step1: Create a client socket to the SMTP port(25)

Step2: Extract the first 3 letters of the response code.

Step3: If it is 421 close the connection.

Step4: If it is 250 then send "HELLO Server name" to the server.

Step5: If it is 250 then send Mail from sender mail" to the server.

Step6: If it is250 then send "RCPT to: receipent_e-mail" to the server

Step7: If it is 250 then send "DATA" to server

Step8: If 354 then send Multi line message with header of the mail.

Step9: For completing the message send "." on a single line.

Step10: This sends the mail to the server.

Step11: Close The connection to the server.

/*Program for Simulating SMPT Client*/

import java.io.*;

import java.net.*;

import java.util.*;

import java.lang.*;

public class smtp

{

Socket s;

DataInputStream din, in;

DataOutputStream out;

PrintWriter pw;

public static void main(String args[]) throws Exception

{ smtp ob = new smtp();

}

public smtp()

{

try

{

s = new Socket("localhost", 25);

din = new DataInputStream(System.in);

in = new DataInputStream(s.getInputStream());

out = new DataOutputStream(s.getOutputStream());

pw = new PrintWriter(out);

String data;

checkfor(true, 220);

System.out.println("hello localhost");

System.out.println("Enter from address:");

data = din.readLine();

send("mail from :" + data + "@192.168.1.6");

checkfor(true, 250);

System.out.println("Enter the destination address:");

data = din.readLine();

CSL332 – NETWORK LAB MANUAL

Department of Computer Science and Engineering, 28

send("Rcpt to:" + data + "@192.168.1.6");

checkfor(true, 250);

send("DATA");

checkfor(true, 354);

System.out.println(" Enter content: terminate line with .");

do {

data = din.readLine();

send(data); }

while (!(data.equals(".")));

checkfor(true, 250);

System.out.println("Exiting successfully");

} catch (Exception e) {

System.out.println(e.getMessage()); }

}

public void checkfor(boolean b, int replycode)

{

String reply;

try {

reply = in.readLine();

System.out.println(reply);

int r = Integer.parseInt(reply.substring(0, 3));

if (!((b && r == replycode) || (!b && r != replycode)))

{ System.out.println("error occured " + r + "expend" + replycode);

System.exit(0);

} else

{

return;

} }

catch (Exception e)

{ System.out.println("Error is reply"); }

} public void send(String msg)

{ pw.println(msg);

pw.flush();

return; }

}

output:

[cs462@cseoracleserver java]$ vi smtp.java

[cs462@cseoracleserver java]$ javac smtp.java

Note: smtp.java uses or overrides a deprecated API.

Note: Recompile with -deprecation for details.

[cs489@cseoracleserver java]$ java smtp

220 localhost.localdomain ESMTP Sendmail 8.13.1/8.13.1; Thu, 2 Feb 2012 10:56:54

+0530

hello localhost

Enter from address:

Pranaya

CSL332 – NETWORK LAB MANUAL

Department of Computer Science and Engineering, 29

250 2.1.0 pranaya@192.168.1.6... Sender ok

Enter the destination address:

ramya

250 2.1.5 ramya@192.168.1.6... Recipient ok (will queue)

354 Enter mail, end with "." on a line by itself

Enter content: terminate line with .

hai how are you. .

250 2.0.0 q125QsMU011543 Message accepted for delivery

Exiting successfully

Result : SMTP is implemented successfully

CSL332 – NETWORK LAB MANUAL

Department of Computer Science and Engineering, 30

PROGRAM 8 – FTP

Aim :To write a java program to perform “File Transfer Protocol”

.ALGORITHM

SERVER SIDE

1.Import the java packages and create class fileserver.

2.String of argument is passed to the args[].

3.Create a new server socket and bind it to the port.

4.Accept the client connection at the requested port.

5.Get the filename and stored into the BufferedReader.

6.Create a new object class file and readline.

7.If File is exists then FileReader read the content until EOF is reached.

8.Else Print FileName does’t exits.

9.End of main.

10.End of FileServer class.

CLIENT SIDE

1.Import the java packages and create class fileClient.

2.String of argument is passed to the args[].

3.The connection between the client and server is successfully established.

4.The object of a BufferReader class is used for storing data content which have

beenretrieved from socket object s.

5.The content are read and stored in inp until the EOF is reached.

6.The content of file are displayed in displayed in client window and the connection

isclosed.

7.End of main.

8.End of Fileclient class.

IMPLEMENTATION OF FTP

SOURCE CODE - SERVER

import java.io.*;

import java.net.*;

public class fileserver1

{

public static void main(String args[])throws IOException

{

ServerSocket s1=null;

try{s1=new ServerSocket(1187);

}catch(IOException u1)

{

System.out.println("could not found port 1187");

System.exit(1);

}

Socket c=null;

try

{c=s1.accept();

System.out.println("connection frame" +c);

}catch(IOException e)

{

CSL332 – NETWORK LAB MANUAL

Department of Computer Science and Engineering, 31

System.out.println("accept failed");

System.exit(1);

}

PrintWriter out=new PrintWriter(c.getOutputStream(),true);

BufferedReader sin=new BufferedReader(new InputStreamReader(System.in));

System.out.println("enter the text file name");

String s=sin.readLine();

File f=new File(s);

if(f.exists())

{

BufferedReader in=new BufferedReader(new FileReader(s));

String v;while((v=in.readLine())!=null)

{

out.write(v);

out.flush();

}

System.out.println("the file send successfully");

in.close();

c.close();

s1.close();

}}

}

CLIENT

import java.io.*;

import java.net.*;

public class fileclient1

{

public static void main(String args[])throws IOException

{

Socket s=null;

BufferedReader b=null;

try

{

s=new Socket(InetAddress.getLocalHost(),1187);

b=new BufferedReader(new InputStreamReader(s.getInputStream()));

}catch(Exception u)

{

System.out.println("the file is received");

System.out.println("don't know host");

System.exit(1);

}

String inp;

while((inp=b.readLine())!=null)

{

System.out.println("the content of the file is");

System.out.println(inp);

CSL332 – NETWORK LAB MANUAL

Department of Computer Science and Engineering, 32

System.out.println("the file is received successfully");

}

b.close();

s.close();

}

}

OUTPUT:SERVER

C:\Documents and Settings\SEENU.R>cd\

C:\>cd C:\Program Files\Java\jdk1.6.0\bin

C:\Program Files\Java\jdk1.6.0\bin>javac fileserver1.java

C:\Program Files\Java\jdk1.6.0\bin>java fileserver1

connection frameSocket[addr=/127.0.0.1,port=1056,localport=1187]

enter the text file name

HAI.txt

the file send successfully

C:\Program Files\Java\jdk1.6.0\bin>

C:\Documents and Settings\SEENU.R>

C:\>cd C:\Program Files\Java\jdk1.6.0\bin

C:\Program Files\Java\jdk1.6.0\bin>javac fileclient1.java

C:\Program Files\Java\jdk1.6.0\bin>java fileclient1

the content of the file is

GOD LOVE'S EVERY ONE IN THE WORLD.

the file is received successfully

C:\Program Files\Java\jdk1.6.0\bin>

RESULT:

Thus the output for the java program is executed and verified successfully

CSL332 – NETWORK LAB MANUAL

Department of Computer Science and Engineering, 33

PROGRAM 9 – CONGESTION CONTROL USING A LEAKY BUCKET ALGORITHM

import java.util.*;

import java.io.*;

class Leaky

{

 public static void main (String args[]) {

 int n,sto,bs,ips,ops,sl;

 Scanner sc = new Scanner(System.in);

//Initial total number of packets that are passing into the bucket

 System.out.println("Enter total number of quries entering\n");

 n=sc.nextInt();

//first estimate total packets in the bucket

 System.out.println("Enter the total number of packets in the bucket \n");

 sto=sc.nextInt();

//the total number of packets that can be filled in the bucket

 System.out.println("total number of packets that can be filled in the bucket \n");

 bs=sc.nextInt();

 //number of input packets at a particular time

 System.out.println("total number of packets that are inputed into the bucket \n");

 ips=sc.nextInt();

//no. of packets that quit the bucket

 System.out.println("total number of packets that are comming out the bucket \n");

 ops=sc.nextInt();

 for(int i=0;i<n;i++)

 {

 System.out.println("At time:\n"+(i+1));

// total size left

 sl=bs-sto;

 System.out.println("size left "+sl);

 if(ips<=(sl))

 {

 sto+=ips;

 System.out.println("Packets received= "+sto+ " out of bucket size= "+bs);

 System.out.println("Packet loss is 0 ");

 }

 else

 {

 System.out.println("Packet loss = "+(ips-(sl)));

//if the bucket is at filled fully

 sto=bs;

 System.out.println("Buffer size= "+sto+ " out of bucket size= "+bs);

 }

 System.out.println("output sent "+ops);

 sto-=ops;

 System.out.println("After output sent storage is "+sto);

 System.out.println("--"); } } }

CSL332 – NETWORK LAB MANUAL

Department of Computer Science and Engineering, 34

PROGRAM 10 – WIRESHARK TOOL

What Is Wireshark?

Wireshark is a network protocol analyzer, or an application that captures packets from a network

connection, such as from your computer to your home office or the internet. Packet is the name

given to a discrete unit of data in a typical Ethernet network.

Wireshark is the most often-used packet sniffer in the world. Like any other packet sniffer,

Wireshark does three things:

1. Packet Capture: Wireshark listens to a network connection in real time and then grabs

entire streams of traffic – quite possibly tens of thousands of packets at a time.

2. Filtering: Wireshark is capable of slicing and dicing all of this random live data using

filters. By applying a filter, you can obtain just the information you need to see.

3. Visualization: Wireshark, like any good packet sniffer, allows you to dive right into the

very middle of a network packet. It also allows you to visualize entire conversations and

network streams.

Figure 1: Viewing a packet capture in Wireshark

Packet sniffing can be compared to spelunking – going inside a cave and hiking around. Folks who

use Wireshark on a network are kind of like those who use flashlights to see what cool things they

can find. After all, when using Wireshark on a network connection (or a flashlight in a cave),

you’re effectively using a tool to hunt around tunnels and tubes to see what you can see.

CSL332 – NETWORK LAB MANUAL

Department of Computer Science and Engineering, 35

What Is Wireshark Used For?

Wireshark has many uses, including troubleshooting networks that have performance issues.

Cybersecurity professionals often use Wireshark to trace connections, view the contents of suspect

network transactions and identify bursts of network traffic. It’s a major part of any IT pro’s toolkit

– and hopefully, the IT pro has the knowledge to use it.

When Should Wireshark Be Used?

Wireshark is a safe tool used by government agencies, educational institutions, corporations, small

businesses and nonprofits alike to troubleshoot network issues. Additionally, Wireshark can be

used as a learning tool.

Those new to information security can use Wireshark as a tool to understand network traffic

analysis, how communication takes place when particular protocols are involved and where it goes

wrong when certain issues occur.

Of course, Wireshark can’t do everything.

First of all, it can’t help a user who has little understanding of network protocols. No tool, no

matter how cool, replaces knowledge very well. In other words, to properly use Wireshark, you

need to learn exactly how a network operates. That means, you need to understand things such as

the three-way TCP handshake and various protocols, including TCP, UDP, DHCP and ICMP.

Second, Wireshark can’t grab traffic from all of the other systems on the network under normal

circumstances. On modern networks that use devices called switches, Wireshark (or any other

standard packet-capturing tool) can only sniff traffic between your local computer and the remote

system it is talking to.

Third, while Wireshark can show malformed packets and apply color coding, it doesn’t have actual

alerts; Wireshark isn’t an intrusion detection system (IDS).

Fourth, Wireshark can’t help with decryption with regards to encrypted traffic.

And finally, it is quite easy to spoof IPv4 packets. Wireshark can’t really tell you if a particular

IP address it finds in a captured packet is a real one or not. That requires a bit more know-how on

the part of an IT pro, as well as additional software.

Common Wireshark Use Cases

Here’s a common example of how a Wireshark capture can assist in identifying a problem. The

figure below shows an issue on a home network, where the internet connection was very slow.

As the figure shows, the router thought a common destination was unreachable. This was

discovered by drilling down into the IPv6 Internet Message Control Protocol (ICMP) traffic, which

https://www.comptia.org/content/guides/a-guide-to-network-troubleshooting

CSL332 – NETWORK LAB MANUAL

Department of Computer Science and Engineering, 36

is marked in black. In Wireshark, any packet marked in black is considered to reflect some sort of

issue.

Figure 2: Drilling down into a packet to identify a network problem using Wireshark

In this case, Wireshark helped determine that the router wasn’t working properly and couldn’t find

YouTube very easily. The problem was resolved by restarting the cable modem. Of course, while

this particular problem didn’t necessitate using Wireshark, it’s kind of cool to authoritatively

finalize the issue.

When you take another look at the bottom of Figure 2, you can see that a specific packet is

highlighted. This shows the innards of a TCP packet that is part of a transport layer security (TLS)

conversation. This is a great example of how you can drill down into the captured packet.

Using Wireshark doesn’t allow you to read the encrypted contents of the packet, but you can

identify the version of TLS the browser and YouTube are using to encrypt things. Interestingly

enough, the encryption shifted to TLS version 1.2 during the listening.

Wireshark is often used to identify more complex network issues. For example, if a network

experiences too many retransmissions, congestion can occur. By using Wireshark, you can identify

specific retransmission issues, as shown below in Figure 3.

CSL332 – NETWORK LAB MANUAL

Department of Computer Science and Engineering, 37

Figure 3: Viewing packet flow statistics using Wireshark to identify retransmissions

By confirming this type of issue, you can then reconfigure the router or switch to speed up traffic.

How to Use Wireshark

You can download Wireshark for free at www.wireshark.org. It’s also freely available, as an open

source application under the GNU General Public License version 2.

How to Install Wireshark on Windows

If you’re a Windows operating system user, download the version appropriate for your particular

version. If you use Windows 10, for example, you’d grab the 64-bit Windows installer and follow

the wizard to install. To install, you’ll need administrator permissions.

How to Install Wireshark on Linux

If you have a Linux system, you’d install Wireshark using the following sequence (notice that

you’ll need to have root permissions):

$ sudo apt-get install wireshark

$ sudo dpkg-reconfigure wireshark-common

$ sudo usermod -a -G wireshark $USER

http://www.wireshark.org/
https://www.gnu.org/licenses/old-licenses/gpl-2.0.en.html
https://www.comptia.org/blog/all-about-linux-and-linux

CSL332 – NETWORK LAB MANUAL

Department of Computer Science and Engineering, 38

$ newgrp wireshark

Once you have completed the above steps, you then log out and log back in, and then start

Wireshark:

$ wireshark &

How to Capture Packets Using Wireshark

Once you’ve installed Wireshark, you can start grabbing network traffic. But remember: To

capture any packets, you need to have proper permissions on your computer to put Wireshark into

promiscuous mode.

o In a Windows system, this usually means you have administrator access.

o In a Linux system, it usually means that you have root access.

As long as you have the right permissions, you have several options to actually start the

capture. Perhaps the best is to select Capture >> Options from the main window. This will

bring up the Capture Interfaces window, as shown below in Figure 4.

Figure 4: The Capture Interfaces dialog in Wireshark

This window will list all available interfaces. In this case, Wireshark provides several to

choose from.

For this example, we’ll select the Ethernet 3 interface, which is the most active interface.

Wireshark visualizes the traffic by showing a moving line, which represents the packets on

the network.

CSL332 – NETWORK LAB MANUAL

Department of Computer Science and Engineering, 39

Once the network interface is selected, you simply click the Start button to begin your

capture. As the capture begins, it’s possible to view the packets that appear on the screen,

as shown in Figure 5, below.

Figure 5: Wireshark capturing packets

Once you have captured all the packets that you want, simply click the red, square button

at the top. Now you have a static packet capture to investigate.

What the Color Coding Means in Wireshark

Now that you have some packets, it’s time to figure out what they mean. Wireshark tries

to help you identify packet types by applying common-sense color coding. The table below

describes the default colors given to major packet types.

Color in

Wireshark
Packet Type

Light purple TCP

Light blue UDP

Black Packets with errors

Light green HTTP traffic

CSL332 – NETWORK LAB MANUAL

Department of Computer Science and Engineering, 40

Color in

Wireshark
Packet Type

Light yellow
Windows-specific traffic, including Server Message Blocks (SMB)

and NetBIOS

Dark yellow Routing

Dark gray TCP SYN, FIN and ACK traffic

The default coloring scheme is shown below in Figure 6. You can view this by going to

View >> Coloring Rules.

Figure 6: Default coloring rules

You can even change the defaults or apply a custom rule. If you don’t want any coloring

at all, go to View, then click Colorize Packet List. It’s a toggle, so if you want the coloring

back, simply go back and click Colorize Packet List again. It’s possible, even, to colorize

specific conversations between computers.

CSL332 – NETWORK LAB MANUAL

Department of Computer Science and Engineering, 41

In Figure 7 below, you can see standard UDP (light blue), TCP (light purple), TCP

handshake (dark gray) and routing traffic (yellow).

Figure 7: Viewing colorized packets in Wireshark

However, you’re not limited to just interpreting by color. It’s possible to view the

input/output (I/O) statistics of an entire packet capture. In Wireshark, just go to Statistics

>> I/O Graph, and you’ll see a graph similar to the one shown in Figure 8.

Figure 8: Viewing the input/output traffic graph in Wireshark

CSL332 – NETWORK LAB MANUAL

Department of Computer Science and Engineering, 42

This particular graph is showing typical traffic generated by a home office. The spikes in

the graph are bursts of traffic that were caused by generating a Distributed Denial of

Service (DDoS) attack using a few Linux systems.

In this case, three major traffic bursts were generated. Many times, cybersecurity pros use

Wireshark as a quick and dirty way to identify traffic bursts during attacks.

It’s also possible to capture the amount of traffic generated between one system and

another. If you go to Statistics and then select Conversations, you will see a summary of

conversations between end points, as shown below in Figure 9.

Figure 9: Viewing endpoint conversations in Wireshark

In the above case, Wireshark was used to see if an old piece of equipment from MCI

communications that was running on a client’s network could be traced.

It turned out that the client didn’t know this device was even on the network. Thus, it was

removed, helping to make the network a bit more secure. Notice, also, that this network

connection is experiencing a lot of traffic to Amazon (administering a server in AWS at

the time) and Box.com (using Box for system backup at the time).

In some cases, it is even possible to use Wireshark to identify the geographic location of

source and destination traffic. If you click on the Map button at the bottom of the screen

(shown in Figure 9 above), Wireshark will show you a map (Figure 10), providing its best

guess of the location of the IP addresses you’ve identified.

https://www.comptia.org/content/guides/what-is-ddos-protection-tools-stopping/
https://www.comptia.org/content/guides/what-is-ddos-protection-tools-stopping/
https://www.comptia.org/content/guides/network-security-basics-definition-threats-and-solutions

CSL332 – NETWORK LAB MANUAL

Department of Computer Science and Engineering, 43

Figure 10: Viewing geographic estimations in Wireshark

Because IPv4 addresses can be easily spoofed, you can’t rely completely on this

geographical information. But it can be fairly accurate.

How to Filter and Inspect Packets in Wireshark

You can apply Wireshark filters in two ways:

In the Display Filter window, at the top of the screen

By highlighting a packet (or a portion of a packet) and right-clicking on the packet

Wireshark filters use key phrases, such as the following:

ip.addr Specifies an IPv4 address

ipv6.addr Specifies an IPv6 address

src Source - where the packet came from

dst Destination - where the packet is going

CSL332 – NETWORK LAB MANUAL

Department of Computer Science and Engineering, 44

You can also use the following values:

&& Means “and,” as in, “Choose the IP address of 192.168.2.1 and 192.168.2.2”

== Means “equals,” as in “Choose only IP address 192.168.2.1”

! Means “not,” as in, do not show a particular IP address or source port

Valid filter rules are always colored green. If you make a mistake on a filter rule, the box will

turn a vivid pink.

Let’s start with a couple of basic rules. For example, let’s say you want to see packets that have

only the IP address of 18.224.161.65 somewhere inside. You would create the following

command line, and put it into the Filter window:

ip.addr == 18.224.161.65

Figure 11 shows the results of adding that filter:

Figure 11: Applying a filter to a capture in Wireshark

Alternatively, you can highlight the IP address of a packet and then create a filter for it.

Once you select the IP address, right-click, and then select the Apply As Filter option.

You’ll then see a menu of additional options. One of those is called Selected. If you choose

Selected, then Wireshark will create a filter that shows only packets with that IP address in

it.

CSL332 – NETWORK LAB MANUAL

Department of Computer Science and Engineering, 45

You can also decide to filter out a specific IP address using the following filter, also shown

in Figure 12:

!ip.addr==18.224.161.65

Figure 12: Filtering out a specific IP address in Wireshark

You’re not limited to just IPv4 addresses. For example, if you want to see if a particular

computer is active and using an IPv6 address on your network, you can open up a copy of

Wireshark and apply the following rule:

ipv6.dst == 2607:f8b0:400a:15::b. This same rule is shown in Figure 13.

Figure 13: Applying an IPv6 filter in Wireshark

CSL332 – NETWORK LAB MANUAL

Department of Computer Science and Engineering, 46

Clearly, this system is alive and well, talking on the network. There are so many

possibilities.

Additional filters include:

tcp.port==8080
Filters packets to show a port of your own choosing – in this

case, port 8080

!(ip.src ==

162.248.16.53)

Shows all packets except those originating from

162.248.16.53

!(ipv6.dst ==

2607:f8b0:400a:15::b)

Shows all packets except those going to the IPv6 address of

2607:f8b0:400a:15::b

ip.addr == 192.168.4.1

&&

ip.addr == 192.168.4.2

Shows both 192.168.4.1 and 192.168.4.2

http.request
Shows only http requests – useful when troubleshooting or

visualizing web traffic

CSL332 – NETWORK LAB MANUAL

Department of Computer Science and Engineering, 47

PROGRAM 11 – NETWORK CONFIGURATION PROCEDURES

Network software installation takes place along with the installation of the operating system

software. At that time, certain IP configuration parameters must be stored in appropriate files so

they can be read at boot time.

The procedure is a matter of creating or editing the network configuration files. How configuration

information is made available to a machine's kernel depends on whether these files are stored

locally (local files mode) or acquired from the network configuration server (network client

mode).

Parameters supplied during network configuration are:

 IP address of each network interface on every machine

 Host names of each machine on the network. You can type the host name in a local file or

a name service database.

 NIS, NIS+, or DNS domain name in which the machine resides, if applicable

 Default router addresses. You supply this only if you have a simple network topology with

only one router attached to each network, or your routers don't run routing protocols such

as the Router Discovery Server Protocol (RDISC) or the Router Information Protocol

(RIP). (See "Routing Protocols" for more information about these protocols.)

 Subnet mask (required only for networks with subnets)

This chapter contains information on creating and editing local configuration files. See the Solaris

Naming Administration Guide for information on working with name service databases.

Network Configuration Task Map

Table 6-3 Network Configuration Task Map

Task Description

Configure a host for

local files mode

Involves editing the nodename, hostname,

hosts, defaultdomain, defaultrouter, and

netmasks files.

Set up a network

configuration server

Involves turning on the in.tftp daemon, and

editing the intetd.conf, hosts, ethers, and

bootparams files.

Configure a host for

network client mode

Involves creating hostname file, editing the

hosts file, and deleting the nodename and

defaultdomain files, if they exist,

https://docs.oracle.com/cd/E19455-01/806-0916/6ja85399s/index.html
https://docs.oracle.com/docs/cd/E19455-01/806-1387/index.html
https://docs.oracle.com/docs/cd/E19455-01/806-1387/index.html

CSL332 – NETWORK LAB MANUAL

Department of Computer Science and Engineering, 48

Task Description

Specify a router for

the network client

Involves editing the defaultrouter and hosts

files.

How to Configure a Host for Local Files Mode

Use this procedure for configuring TCP/IP on a machine that runs in local files mode.

1. Become superuser and change to the /etc directory.

2. Type the host name of the machine in the file /etc/nodename.

For example, if the name of the host is tenere, type tenere in the file.

3. Create a file named /etc/hostname.interface for each network interface.

(The Solaris installation program automatically creates this file for the primary network

interface.) Refer to "/etc/hostname.interface File" for details. If you are using IPv6, see

"IPv6 Network Interface Configuration File".

4. Type either the interface IP address or the interface name in each /etc/hostname.interface

file.

For example, create a file named hostname.ie1, and type either the IP address of the host's

interface or the host's name.

5. Edit the /etc/inet/hosts file to add:

a. IP addresses that you have assigned to any additional network interfaces in the local

machine, along with the corresponding host name for each interface.

The Solaris installation program has already created entries for the primary network

interface and loopback address.

b. IP address or addresses of the file server, if the /usr file system is NFS mounted.

Note -

The Solaris installation program creates the default /etc/inet/hosts for the local

machine. If the file does not exist, create it as shown in "hosts Database". Also, if

you are using IPv6, see "/etc/inet/ipnodes File".

https://docs.oracle.com/cd/E19455-01/806-0916/6ja85399o/index.html#ipconfig-13
https://docs.oracle.com/cd/E19455-01/806-0916/6ja8539bv/index.html
https://docs.oracle.com/cd/E19455-01/806-0916/6ja85399o/index.html#ipconfig-18
https://docs.oracle.com/cd/E19455-01/806-0916/6ja8539c5/index.html#solimpconcepts-19

CSL332 – NETWORK LAB MANUAL

Department of Computer Science and Engineering, 49

6. Type the host's fully qualified domain name in the /etc/defaultdomain file.

For example, suppose host tenere was part of the domain deserts.worldwide.com.

Therefore, you would type: deserts.worldwide.com in /etc/defaultdomain. See

"/etc/defaultdomain File" for more information.

7. Type the router's name in /etc/defaultrouter.

See "/etc/defaultrouter File" for information about this file.

8. Type the name of the default router and its IP addresses in /etc/inet/hosts.

Additional routing options are available. Refer to the discussion on routing options in "How

to Configure Hosts for Network Client Mode". You can apply these options to a local files

mode configuration.

9. If your network is subnetted, type the network number and the netmask in the file

/etc/inet/netmasks.

If you have set up a NIS or NIS+ server, you can type netmask information in the

appropriate database on the server as long as server and clients are on the same network.

10. Reboot each machine on the network.

How to Set Up a Network Configuration Server

1. Become superuser and change to the root directory of the prospective network

configuration server.

2. Turn on the in.tftpd daemon by creating the directory /tftpboot:

mkdir /tftpboot

3. This configures the machine as a TFTP, bootparams, and RARP server.

4. Create a symbolic link to the directory.

ln -s /tftpboot/. /tftpboot/tftpboot

5. Enable the tftp line in intetd.conf.

Check that the /etc/inetd.conf entry reads:

https://docs.oracle.com/cd/E19455-01/806-0916/6ja85399o/index.html#ipconfig-16
https://docs.oracle.com/cd/E19455-01/806-0916/6ja85399o/index.html#ipconfig-17
https://docs.oracle.com/cd/E19455-01/806-0916/6ja853995/index.html#ipconfig-90
https://docs.oracle.com/cd/E19455-01/806-0916/6ja853995/index.html#ipconfig-90

CSL332 – NETWORK LAB MANUAL

Department of Computer Science and Engineering, 50

tftp dgram udp wait root /usr/sbin/in.tftpd in.tftpd -s /tftpboot

This prevents inettftpd() from retrieving any file other than one located in /tftpboot.

6. Edit the hosts database, and add the host names and IP addresses for every client on the

network.

7. Edit the ethers database, and create entries for every host on the network to run in network

client mode.

8. Edit the bootparams database.

See "bootparams Database". Use the wildcard entry or create an entry for every host that

run in network client mode.

9. Reboot the server.

Information for setting up install servers and boot servers can be found in Solaris Advanced

Installation Guide.

Configuring Network Clients

Network clients receive their configuration information from network configuration servers.

Therefore, before you configure a host as a network client you must ensure that at least one network

configuration server is set up for the network.

How to Configure Hosts for Network Client Mode

Do the following on each host to be configured in network client mode:

1. Become superuser.

2. Check the directory for the existence of an /etc/nodename file. If one exists, delete it.

Eliminating /etc/nodename causes the system to use the hostconfig program to obtain the

host name, domain name, and router addresses from the network configuration server. See

"Network Configuration Procedures".

3. Create the file /etc/hostname.interface, if it does not exist.

Make sure that the file is empty. An empty /etc/hostname.interface file causes the system

to acquire the IP address from the network configuration server. If you are using IPv6, see

"IPv6 Network Interface Configuration File".

4. Ensure that the /etc/inet/hosts file contains only the host name and IP address of the

loopback network interface.

https://docs.oracle.com/cd/E19455-01/806-0916/6ja85399p/index.html#ipconfig-51
https://docs.oracle.com/docs/cd/E19455-01/806-0957/index.html
https://docs.oracle.com/docs/cd/E19455-01/806-0957/index.html
https://docs.oracle.com/cd/E19455-01/806-0916/6ja853995/index.html
https://docs.oracle.com/cd/E19455-01/806-0916/6ja8539bv/index.html

CSL332 – NETWORK LAB MANUAL

Department of Computer Science and Engineering, 51

(See "Loopback Address".) The file should not contain the IP address and host name for

the local machine (primary network interface). If you are using IPv6, see "/etc/inet/ipnodes

File".

5. Check for the existence of an /etc/defaultdomain file. If one exists, delete it.

The hostconfig program sets the domain name automatically. If you want to override the

domain name set by hostconfig, type the substitute domain name in the file

/etc/defaultdomain.

6. Ensure that the search paths in the client's /etc/nsswitch.conf reflects the name service

requirements for your network.

How to Specify a Router for the Network Client

1. If you have only one router on the network and you want the network configuration server

to specify its name automatically, ensure that the network client does not have a

/etc/defaultrouter file.

2. To override the name of the default router provided by the network configuration server:

a. Create /etc/defaultrouter on the network client.

b. Type the host name and IP address of the machine you have designated as the

default router.

c. Add the host name and IP address of the designated default router to the network

client's /etc/inet/hosts.

3. If you have multiple routers on the network, create /etc/defaultrouter on the network client,

but leave it empty.

Creating /etc/defaultrouter and leaving it empty causes one of the two dynamic routing protocols

to run: ICMP Router Discovery protocol (RDISC), or Routing Information Protocol (RIP). The

system first runs the program in.rdisc, which looks for routers that are running the router discovery

protocol. If it finds one such router, in.rdisc continues to run and keeps track of the routers that are

running the RDISC protocol.

If the system discovers that routers are not responding to the RDISC protocol, it uses RIP and runs

the daemon in.routed to keep track of them.

https://docs.oracle.com/cd/E19455-01/806-0916/6ja85399o/index.html#ipconfig-22
https://docs.oracle.com/cd/E19455-01/806-0916/6ja8539c5/index.html#solimpconcepts-19
https://docs.oracle.com/cd/E19455-01/806-0916/6ja8539c5/index.html#solimpconcepts-19

CSL332 – NETWORK LAB MANUAL

Department of Computer Science and Engineering, 52

PROGRAM 12 – NETWORK SIMULATOR 2 (NS2) : FEATURES & BASIC

ARCHITECTURE OF NS2

1. What is NS2

NS2 stands for Network Simulator Version 2. It is an open-source event-driven simulator designed

specifically for research in computer communication networks.

2. Features of NS2

1. It is a discrete event simulator for networking research.

2. It provides substantial support to simulate bunch of protocols like TCP, FTP, UDP, https and

DSR.

3. It simulates wired and wireless network.

4. It is primarily Unix based.

5. Uses TCL as its scripting language.

6. Otcl: Object oriented support

7. Tclcl: C++ and otcl linkage

8. Discrete event scheduler

3. Basic Architecture

NS2 consists of two key languages: C++ and Object-oriented Tool Command Language (OTcl).

While the C++ defines the internal mechanism (i.e., a backend) of the simulation objects, the OTcl

sets up simulation by assembling and configuring the objects as well as scheduling discrete events.

The C++ and the OTcl are linked together using TclCL

CSL332 – NETWORK LAB MANUAL

Department of Computer Science and Engineering, 53

4. Why two language? (TCL and C++)

NS2 stands for Network Simulator Version 2. It is an open-source event-driven simulator designed

specifically for research in computer communication networks.

NS2 uses OTcl to create and configure a network, and uses C++ to run simulation. All C++ codes

need to be compiled and linked to create an executable file.

Use OTcl

 For configuration, setup, or one time simulation, or

 To run simulation with existing NS2 modules.

This option is preferable for most beginners, since it does not involve complicated internal

mechanism of NS2. Unfortunately, existing NS2 modules are fairly limited. This option is perhaps

not sufficient for most researchers.

Use C++

 When you are dealing with a packet, or - when you need to modify existing NS2 modules.

This option perhaps discourages most of the beginners from using NS2. This book particularly

aims at helping the readers understand the structure of NS2 and feel more comfortable in

modifying NS2 modules.

5. Installing NS2 on windows 7

NS2 builds and runs under windows using Cygwin. Cygwin provides Linux like environment

under windows.

System Requirements: A computer with C++ compiler. Building full NS2 package requires large

memory space approximately 250MB

I. Steps to install NS 2 on windows 7 are given below

1. Download Cygwin from following link https://www.cygwin.com/setup.exe

2. Run the downloaded setup.exe and you will see screen shown below click next.

CSL332 – NETWORK LAB MANUAL

Department of Computer Science and Engineering, 54

3. Select option "Install From Internet". If you have already downloaded the package select "Install

from local directory" and click next

4. Keep the default installation directory as "C:\cygwin" and click next

CSL332 – NETWORK LAB MANUAL

Department of Computer Science and Engineering, 55

5. Keep default local package directory as your download folder and click next.

CSL332 – NETWORK LAB MANUAL

Department of Computer Science and Engineering, 56

6. Next screen will ask for your Internet connection type keep it as "Direct connection" and click

next and in next screen choose one site to download the packages and click next.

7. In next screen Cygwin will allow to select the packages you want to install

CSL332 – NETWORK LAB MANUAL

Department of Computer Science and Engineering, 57

8. Uncheck the option "Hide obsolete packages" then click on "view" button till the word

"category" changes to "Full"

To install NS2 you need to select and install following packages:

 gcc

 gcc-g++

 gnuplot

 make

 patch

 perl

 tar

 X-startup-scripts

 xorg-x11-base

 xorg-x11-bin

 xorg-x11-devel

 xorg-x11-bin-dlls

 xorg-x11-bin-lndir

 xorg-x11-etc

 xorg-x11-fenc

 xorg-x11-fnts

 xorg-x11-libs-data

 xorg-x11-xwin

 libxt-devel

 libXmu-devel

CSL332 – NETWORK LAB MANUAL

Department of Computer Science and Engineering, 58

To select a package search the package name and click on word "skip" this will change it to version

number of the package. Do this for all above packages and click next to start download and

installation

9. Once installation is complete create desktop icons if you need.

CSL332 – NETWORK LAB MANUAL

Department of Computer Science and Engineering, 59

NOTE: If you missed any package while installing Cygwin first time you can install it by running

the setup.exe again and selecting the package in step 8.

10. Cygwin installation is complete now you can run Cygwin from desktop and see its interface.

II. Steps is to install NS2

1. Download NS2 from following link: https://www.isi.edu/nsnam/dist/ns-allinone-2.28.tar.gz

2. Decompress the file use winrar. Copy the decompressed folder the Cygwin installation directory

under the subdirectory home. It will be C:\cygwin\home\system_name : where system_name is

name of your system in above Cygwin installation this path will be C:\Cygwin\home\sys27

3. Run Cygwin from desktop and change the directory to folder you copied just now in step 2

command to change directory:cd /home/sys27/ns-allinone-2.28

NOTE: please change sys27 to name of your system

4. To start installation type following command:"./install"(WITHOUT qoutes)

This will began the installation process if any Cygwin package is missing it will be reported to you

if so the run Cygwin setu.exe and install the missing package and start again from step 2.

CSL332 – NETWORK LAB MANUAL

Department of Computer Science and Engineering, 60

Installation is a long process and take quite some time once it is finished you will get a screen as

shown below:

5. Add following lines to the .bashrc

export NS_HOME=/home/sys27/ns-allinone-2.28

export PATH=$NS_HOME/nam-

1.11:$NS_HOME/tcl8.4.5/unix:$NS_HOME/tk8.4.5/unix:$NS_HOME/bin:$PATH

export

LD_LIBRARY_PATH=$NS_HOME/tcl8.4.5/unix:$NS_HOME/tk8.4.5/unix:$NS_HOME/otcl-

1.9:$NS_HOME/lib:$LD_LIBRARY_PATH

export TCL_LIBRARY=$NS_HOME/tcl8.4.5/library

NOTE: replace sys27 with your system name

6. To check if NS2 is installed correctly you can run one sample example given in ns-tutorials

folder

To run the example change the directory to examples folder: cd ./home/sys27/ns-allinone-2.28/ns-

tutorial/examples

Then type following command:

ns example2.tcl

CSL332 – NETWORK LAB MANUAL

Department of Computer Science and Engineering, 61

CSL332 – NETWORK LAB MANUAL

Department of Computer Science and Engineering, 62

Tools for generating TCL Script for NS2

NS2 a very common and widely used tool to simulate small and large area networks. Tcl scripts

are widely used in NS-2 simulation tool. Tcl scripts are used to set up a wired or wireless

communication network, and then run these scripts via the NS-2 for getting the simulation

results.Several tools are available to design networks and generate TCL scripts some of them are

discussed below

I. NS2 scenario Generator (NSG):

Its a java based tool that can run on any platform and can generate TCL scripts for wired and

Wireless scenarios for NS2.Main features of NSG are:

 Creating Wired and wireless nodes by drag and drop.

 Creating Simplex and Duplex links for wired network

 Creating Grid, Random and Chain topologies.

 Creating TCP and UDP agents. Also supports TCP

 Tahoe, TCP Reno, TCP New-Reno and TCP Vegas.

 Supports Ad Hoc routing protocols such as DSDV,

 AODV, DSR and TORA.

 Supports FTP and CBR applications.

 Supports node mobility.

 Setting the packet size, start time of simulation, end

 Time of simulation, transmission range and interference

 Range in case of wireless networks, etc.

 Setting other network parameters such as bandwidth, etc for wireless scenarios

II. Visual Network Simulator (VNS):

CSL332 – NETWORK LAB MANUAL

Department of Computer Science and Engineering, 63

This tool is centered on capabilities of NSG. It also provides support to Differentiated Services

(DiffServ) scenarios and simple and intuitive set of icons to represent the components of a network.

Some features of VNS are given below:

 Adding and configuration of links, agents and traffic sources.

 Modeling network scenarios with support to multicast.

 Selection of a dynamic routing protocol.

 Definition of the simulation output as an animation and/or graphics.

 Edition of the Tcl script generated.

 Saving the defined simulation scenario

III. NS 2 Workbench

Ns Bench makes NS-2 simulation development and analysis faster and easier for students and

researchers without losing the flexibility or expressiveness gained by writing a script. Some

features are:

 Nodes, simplex/duplex links and LANs

 Agents: TCP,UDP, TCPSink, TCP/Fack,TCP/FullTcp, TCP/Newreno,

TCP/Reno,TCP/Sack1, TCPSink, TCPSink/Sack1,TCPSink/DelAck,

 TCPSink/Sack1/DelAck,TCP/Vegas, Null Agent.

 Applications/Traffic: FTP, Telent, https/Server,https/Client, https/Cache, webtraf,

Traffic/CBR,Traffic/Pareto, Traffic/Exponential.

 Services: Multicast, Packet Scheduling, RED, Diff-Serv.

 Creating "Groups" concept to compensate for "loops"

 Scenario generator.

 Link Monitors.

 Loss Models.

 Routing Protocols

IV. Network Simulation by Mouse (NSBM)

NSBM, developed in java, is a graphical tool that is used to generate TCL script using a mouse.

Nodes and links can be created with a single mouse click. You can draw a network topology with

multiple nodes with only a few mouse clicks. Afterwards you click on a button and there is the

TCL code, almost ready for use with the ns.

NSBM used in order to process the XML configuration data. It must provide many functions,

which are specified only in the configuration data at run time. Because the classes are

implementation-specific, classes generated by the binding compiler in one JAXB implementation

will probably not work with another JAXB implementation. So if you change to another JAXB

implementation, you should rebind the schema with the binding compiler provided by that

implementation

CSL332 – NETWORK LAB MANUAL

Department of Computer Science and Engineering, 64

Trace Files Generated in NS2

NS2 currently supports a number of different types of trace files. In addition to its own format,

NS2 also has the Nam trace format, which contains the necessary information from the simulation

to drive the Nam visualizer. Both of these trace formats are very specific when it comes to giving

details about the events that occur during an NS2 simulation.

Traces and monitors represent the only support for data collection in ns-2. Traces record events

related to the generation, enqueueing, forwarding, and dropping of packets. Each event

corresponds to a line of ASCII characters, which contains information on the event type and the

information stored into the packet

NS-2 provides three kinds of formats for wired networks: Tracing, Monitoring and NAM trace

file.

I. Tracing: Trace file format is given below:

 Operation performed in the simulation

 Simulation time of event occurrence

 Node 1 of what is being traced

 Node 2 of what is being traced

 Packet type

 Packet size

 Flags

 IP flow identifier

 Packet source node address

 Packet destination node address

 Sequence number

CSL332 – NETWORK LAB MANUAL

Department of Computer Science and Engineering, 65

 Unique packet identifier

Example of Trace file:

II. Monitoring

Queue monitoring refers to the capability of tracking the dynamics of packets at a queue (or other

object). A queue monitor tracks packet arrival/departure/drop statistics, and may optionally

compute averages of these values. Monitoring was useful tools to find detail information about

queue.

Flow monitor trace format is given below:

CSL332 – NETWORK LAB MANUAL

Department of Computer Science and Engineering, 66

III. NAM trace files which are used by NAM for visualization of ns simulations. The NAM trace

file should contain topology information like nodes, links, queues, node connectivity etc as well

as packet trace information. A NAM trace file has a basic format to it. Each line is a NAM event.

The first character on the line defines the type of event and is followed by several flags to set

options on that event. There are 2 sections in that file, static initial configuration events and

animation events. All events with -t * in them are configuration events and should be at the

beginning of the file.

Example of NAM file is:

6. Example on NS2

NS workbench is used in following examples to create scenarios and generate TCL scripts, which

are then run in NS2 to generate trace file and NAM file

To use NS workbench you will need Java Sdk installed on your system then download ns-bench

jar file and execute it to start ns workbench

Example 1:

The network consists of five nodes n0 to n4. In this scenario, node n0 sends constant bit-rate (CBR)

traffic to node n3, and node n1 transfers data to node n4 using a file transfer protocol (FTP). These

two carried traffic sources are carried by transport layer protocols User Datagram Protocol (UDP)

and Transmission Control Protocol (TCP), respectively. In NS2, the transmitting object of these

two protocols are a UDP agent and a TCP agent, while the receivers are a Null agent and a TCP

sink agent, respectively.

CSL332 – NETWORK LAB MANUAL

Department of Computer Science and Engineering, 67

Network created by ns workbench is shown below

Then Generate the TCL script and save it. Script generated is given below:

Creating New Simulator

set ns [new Simulator]

Setting up the traces

set f [open outEx1.tr w]

set nf [open outEx1.nam w]

$ns namtrace-all $nf

$ns trace-all $f

proc finish {} {

 global ns nf f

 $ns flush-trace

CSL332 – NETWORK LAB MANUAL

Department of Computer Science and Engineering, 68

 puts "Simulation completed."

 close $nf

 close $f

 exit 0

}

#Create Nodes

set n0 [$ns node]

 puts "n0: [$n0 id]"

set n1 [$ns node]

 puts "n1: [$n1 id]"

set n2 [$ns node]

 puts "n2: [$n2 id]"

set n3 [$ns node]

 puts "n3: [$n3 id]"

set n4 [$ns node]

 puts "n4: [$n4 id]"

#Setup Connections

$ns duplex-link $n0 $n2 100Mb 5ms DropTail

$ns duplex-link $n2 $n4 54Mb 10ms DropTail

$ns duplex-link $n1 $n2 100Mb 5ms DropTail

$ns duplex-link $n2 $n3 54Mb 10ms DropTail

$ns queue-limit $n2 $n3 40

$ns simplex-link $n3 $n4 10Mb 15ms DropTail

$ns simplex-link $n4 $n3 10Mb 15ms DropTail

#Set up Transportation Level Connections

set tcp0 [new Agent/TCP]

$ns attach-agent $n1 $tcp0

set udp1 [new Agent/UDP]

$udp1 set dst_addr_ Unicast

$udp1 set fid_ 1

$ns attach-agent $n0 $udp1

CSL332 – NETWORK LAB MANUAL

Department of Computer Science and Engineering, 69

set null0 [new Agent/Null]

$ns attach-agent $n3 $null0

set sink0 [new Agent/TCPSink]

$ns attach-agent $n4 $sink0

#Setup traffic sources

set ftp0 [new Application/FTP]

$ftp0 attach-agent $tcp0

set cbr0 [new Application/Traffic/CBR]

$cbr0 set rate_ 2Mb

$cbr0 set packetSize_ 1000

$cbr0 attach-agent $udp1

$ns connect $udp1 $null0

$udp1 set fid_ 0

$ns connect $tcp0 $sink0

$tcp0 set fid_ 1

#Start up the sources

$ns at 0.05 "$ftp0 start"

$ns at 0.1 "$cbr0 start"

$ns at 60.0 "$ftp0 stop"

$ns at 60.5 "$cbr0 stop"

$ns at 61.0 "finish"

$ns run

Then to run the script in NS2 start Cygwin and change directory path to folder you saved your

TCL script in and then use ns command to run the script.

CSL332 – NETWORK LAB MANUAL

Department of Computer Science and Engineering, 70

Once the simulation is completed two files OutEx1.tr and OutEx1.nam will be generated in the

same folder.

Content of Nam file

CSL332 – NETWORK LAB MANUAL

Department of Computer Science and Engineering, 71

To run the Network Animator in the finish procedure of the script call nam.exe with name file

name as

proc finish {} {

 global ns nf f

 $ns flush-trace

 close $nf

 close $f

 exec nam outEx1.nam &

 exit 0

}

CSL332 – NETWORK LAB MANUAL

Department of Computer Science and Engineering, 72

7. Advantages and Disadvantages of NS2

Advantages

 Cheap- Does not require costly equipment

 Complex scenarios can be easily tested.

 Results can be quickly obtained-more ideas can be tested in a smaller time frame.

 Supported protocols

 Supported platforms

 Modularity

 Popular

Disadvantages

 Real system too complex to model. i.e. complicated structure.

 Bugs are unreliable

